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Many studies have used DNA microarrays to identify the gene
expression signatures of human cancer, yet the critical features of
these often unmanageably large signatures remain elusive. To ad-
dress this, we developed a statistical method, comparative meta-
profiling, which identifies and assesses the intersection of multiple
gene expression signatures from a diverse collection of microarray
data sets. We collected and analyzed 40 published cancer microarray
data sets, comprising 38 million gene expression measurements from
>3,700 cancer samples. From this, we characterized a common tran-
scriptional profile that is universally activated in most cancer types
relative to the normal tissues from which they arose, likely reflecting
essential transcriptional features of neoplastic transformation. In
addition, we characterized a transcriptional profile that is commonly
activated in various types of undifferentiated cancer, suggesting
common molecular mechanisms by which cancer cells progress and
avoid differentiation. Finally, we validated these transcriptional pro-
files on independent data sets.

To identify genes potentially important in cancer, scientists have
compared the global gene expression profiles of cancer tissue

and corresponding normal tissue (1–11). Such analyses usually
generate hundreds of genes differentially expressed in cancer
relative to normal tissue, making it difficult to distinguish the genes
that play a critical role in the neoplastic phenotype from those that
represent epiphenomena or are spuriously differentially expressed.
Another common experimental design is to compare cancer sam-
ples based on their degree of progression, as determined by
histological grade, invasiveness, or metastatic potential (2, 11–22).
For example, it is known that high-grade undifferentiated-
appearing cancers tend to behave more aggressively than their
low-grade counterparts, often leading to poorer patient outcomes.
To understand the mechanisms by which this progression occurs,
many studies have compared the global gene expression profiles of
undifferentiated and well differentiated cancers of the same origin.
But again, like the ‘‘cancer vs. normal’’ studies, these analyses can
also yield hundreds of differentially expressed genes. Thus, it
remains a critical problem to elucidate the essential transcriptional
features of neoplastic transformation and progression both to direct
future research and to define candidate therapeutic targets.

A logical approach for identifying the essential features of a
process, given a large set of possibilities observed in a variety of
independent systems, is to search for the intersection of observed
possibilities across the set of systems, because it is expected that the
essential features will be overrepresented and the system-specific,
epiphenomenal, and spurious features will be underrepresented.
Given the multitude of studies that have attempted to capture the
cancer type-specific gene expression programs of neoplastic trans-
formation and progression, we sought to define cancer type-
independent, and likely essential, transcriptional features of these
important processes. It was initially unclear to us whether such
essential features might exist. The complexity in the cellular and
molecular origins of cancer might lead one to suspect largely distinct

transcriptional programs for independent cancer types, whereas the
observation of common phenotypes and behaviors among distinct
cancer types might suggest similar transcriptional programs.

In this report, we attempt to identify common transcriptional
programs of neoplastic transformation and progression across a
wide range of cancer types. To establish a framework for such
analysis, we adopted and modified a method, termed meta-analysis
of microarrays, which was previously used to validate analogous
prostate cancer microarray studies against one another (25). This
method avoids many of the pitfalls that complicate the comparison
of disparate microarray data sets by comparing statistical measures
of differential expression generated independently from each data
set rather than actual gene expression measurements. Here, we
present a similar method, termed comparative meta-profiling,
aimed not at validating analogous data sets, but at comparing and
assessing the intersection of many cancer type-specific gene expres-
sion data sets, with the goal of identifying cancer type-independent,
and likely essential, transcriptional profiles of neoplastic transfor-
mation and progression.

Methods
Data Collection, Processing, and Storage. Microarray data sets were
downloaded from public web sites or provided by the authors upon
request. Data are available at www.oncomine.org�meta. Data were
of two general types, two channel ratio data and single channel
intensity data, and were usually provided in single composite file
format. All available data were included in processing and analy-
sis, except for negative single channel intensity values. All data
sets were log transformed and median centered per array,
and the standard deviations were normalized to one per
array. Studies were named by the following convention:
FirstAuthor�TissueTypeProfiled (e.g., Dhanasekaran�Prostate). To
facilitate multistudy analysis, microarray features were mapped to
Unigene Build 159. Data and initial data analyses were stored in an
ORACLE 8.1 relational database.

Initial Data Analysis. For each of the 40 microarray data sets present
in the database, we reviewed the samples profiled. Thirty-four
studies had at least four samples corresponding to both classes of
one analysis of interest and were further analyzed. Analyses of
interest included: cancer versus respective normal tissue, high grade
(undifferentiated) cancer versus low grade (differentiated cancer)
cancer, poor outcome (metastases, recurrence, or cancer-specific
death) cancer versus good outcome (long-term or recurrence-free
survival) cancer, metastasis versus primary cancer, and subtype 1
versus subtype 2. After the assignment of samples to classes, each
gene was assessed for differential expression with Student’s t test
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using TOTAL ACCESS STATISTICS 2002 (FM, Vienna, VA). t tests were
conducted both as two-sided for differential expression analysis and
one-sided for overexpression analysis. To account for multiple
hypothesis testing, Q values (26) (estimated false discovery rates)
were calculated as

Q � �estimated no. of false positives)�

(no. of called positives at a given P value)

Q � �P � n��i,

where P is P value, n is the total number of genes, and i is the
sorted rank of P value.

Meta-Profiling. The purpose of meta-profiling is to address the
hypothesis that a selected set of differential expression signatures
shares a significant intersection of genes (a meta-signature), thus
inferring a biological relatedness. The automated method proceeds
as follows: (i) a set of S similar differential expression analyses are
selected for meta-profiling; (ii) an overexpression direction (e.g.,
cancer � normal) and a significance threshold (T) are chosen to
define differential expression signatures from the selected analyses
(TDEFAULT � 0.10); (iii) genes are sorted by the number of
signatures in which they are present; (iv) the number of genes
present in each possible number of signatures is tallied (N0, N1,
N2. . . NS); (v) random permutations are performed (steps iii and iv)
in which the actual Q values are randomly assigned to genes per
study, so that the genes in each signature change at random, but the
number of genes in each signature remain the same. This simulation
generates a tally of the number of genes present in each possible
number of random signatures (E0, E1, E2. . . ES); (vi) the significance
of intersection among the true signatures is assessed by the mini-
mum meta-false discovery rate (mFDRMIN) calculated as

mFDRMIN � MINIMUM��Ei � 1���Ni�� for i � 0 to S.

(vii) If mFDRMIN � 0.10, a meta-signature is defined as those genes
that are significantly differentially expressed (Q � T) in at least j of
S analyses, where j is equal to i when mFDRMIN was defined; (viii)
if no meta-signature is defined by using TDEFAULT, steps ii through
vii are repeated as T is systematically lowered by 50% at each
iteration until either a meta-signature is defined or the number of
genes in two or more signatures reaches 0, in which case the result
is negative. This assures that a meta-signature is not missed because
of an overly liberal Q value threshold. The meta-profiling algorithm
was implemented in PERL.

Class Prediction. To assess the classification accuracy of the meta-
signatures, a leave-one-out voting classifier was applied. To predict
the class of a particular sample, that sample was removed from the
data set, and the remaining samples were used to calculate the two
class means for each gene in the signature. The left out sample’s
gene expression values were compared to the class means. The class
mean in which the left out sample’s value was closest to received a
vote. The votes were tallied, and the prediction was defined as the
class with the most votes. A Fisher’s exact test was used to assess the
significance of the classification. The meta-signatures and class
prediction results were visualized by using TREEVIEW (27) (http:��
rana.lbl.gov�eisensoftware.htm).

Results and Discussion
Data and Primary Analysis. As of May 1, 2003, we cataloged
information on 152 cancer microarray studies by searching the
literature. This catalog and the results from this report are available
to explore via our companion web resource, ONCOMINE (www.
oncomine.org�meta). Of these published studies, 40 data sets were
publicly available and compiled; in total, 37,901,459 gene measure-
ments from 3,762 microarray experiments. Most data sets were of

two general formats, either single-channel intensity data, usually
corresponding to Affymetrix microarrays, or dual-channel ratio
data, usually corresponding to spotted cDNA microarrays, and in
the majority of cases, a single composite data file was provided by
the study authors and incorporated into our database.

Although many sophisticated analytical and statistical ap-
proaches have been applied to microarray normalization and
differential expression analysis, we sought a single approach that
would be simple in application yet robust to the heterogeneous data
formats, experimental platforms, and experimental designs. We
first applied a global normalization procedure to all data sets (see
Methods). Second, by studying the samples profiled in each of the
40 data sets, we defined potential two class differential expression
analyses relevant to the processes of neoplastic transformation and
progression. These included cancer versus respective normal tissue,
high-grade (undifferentiated) cancer versus low-grade (differenti-
ated cancer) cancer, poor outcome (metastases, recurrence, or
cancer-specific death) cancer versus good outcome (long-term or
recurrence-free survival) cancer, metastatic cancer versus primary
cancer, and cancer subtype 1 (e.g., estrogen receptor positive)
versus subtype 2 (e.g., estrogen receptor negative) and were iden-
tified in 34 data sets (Fig. 4, which is published as supporting
information on the PNAS web site). Based on these classifications,
we conducted 81 sets of analyses by defining two classes of samples,
calculating a Student’s t statistic, P value (false positive rate), and
Q value (false discovery rate) for each microarray feature (see
Methods) (26). The majority of cancer vs. normal (36 of 40),
differentiation (8 of 11), metastases vs. primary (3 of 3), and cancer
subtype (15 of 16) analyses identified large sets of differentially
expressed genes (Q � 0.10), whereas only 3 of 11 outcome analyses
did, two of which compared poor outcome breast cancer with
favorable outcome (14, 15), and one which compared poor outcome
diffuse large B cell lymphoma with favorable outcome (28). Fig. 4
summarizes the 81 analyses and the number of significant differ-
entially expressed genes identified in each at varying significance
thresholds. These data can be analyzed with our companion web
resource, ONCOMINE (www.oncomine.org�meta).

Comparative Meta-Profiling Method. Because it is generally agreed
that microarray data from distinct experimental platforms, often
using distinct reference samples, are not directly comparable, we
developed a method that instead compares statistical measures (Q
values) generated independently from each data set (25). To
compare statistical measures across data sets, our method requires
that analogous hypotheses have been tested in each data set (e.g.,
genes differentially expressed between normal tissue and cancer
tissue). To identify and assess the intersection of multiple differ-
ential expression signatures, so-called meta-signatures, we applied
our automated method, comparative meta-profiling (Fig. 1, see
Methods). The method is as follows: (i) a set of analogous differ-
ential expression analyses are selected for meta-profiling, (ii) a
direction and significance threshold are set to define differential
expression signatures from the precomputed differential expression
analyses (e.g., overexpressed in cancer relative to normal, Q � 0.10),
(iii) genes are sorted based on the number of signatures in which
they are present, and (iv) a meta-signature is defined if there are
significantly more genes intersecting a given number of signatures
than would be expected by chance, as defined by a random
simulation. A statistical measure, the minimum meta-false discov-
ery rate (mFDRMIN) is used to assess the degree of intersection
among gene expression signatures (see Methods).

Meta-Signature of Neoplastic Transformation. We began by meta-
profiling 36 neoplastic transformation signatures from 21 data sets
(overexpressed in cancer relative to respective normal tissue, Q �
0.10), which span 12 tissue types including breast, prostate, colon,
lung, liver, brain, ovary, pancreas, uterus, salivary gland, bladder,
and B lymphocytes. We hypothesized that if a meta-signature
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existed, the genes in the signature would reflect essential transcrip-
tional features of cancer, independent of tissue of origin or initial
transforming mechanism. At the significance threshold of Q � 0.10,
183 genes were present in at least 10 of 36 signatures, 67 genes in
at least 12 signatures, and one gene in 18 signatures. In a random
simulation, in which genes were randomly assigned to signatures
while maintaining the number of genes in each signature, no genes
were present in 10 or more signatures, indicating that the 183 genes
present in at least 10 signatures represented a statistically significant
multicancer-type meta-signature (mFDRMIN � 0.0055). Fig. 2A

depicts the 67 genes present in at least 12 cancer vs. normal
signatures. Many of these genes have previously been associated
with cancer; however, often associations have only been made with
one specific type of cancer or in cell lines, and not with cancer in
general. As defined by the Gene Ontology Consortium (29)
(www.geneontology.org), the meta-signature contains genes in-
volved in the cell cyle (CDKN3, CKS2, E2F5, PTMA, PLK, CCT4),
invasion (MMP9), transcriptional regulation (E2F5, SOX4,
HDAC1, CBX3, SMARCA4), protein folding (HSPD1, HSPE1,
CCT4), and the proteasome (PSMA1, PSMC4, PSME2). The genes
in this signature can be further explored with ONCOMINE
(www.oncomine.org�meta).

To assess the universality of the meta-signature, the top 67 genes
were used to predict cancer vs. normal status in 39 analyses using
a leave-one-out voting classifier (see Methods and Table 1, which is
published as supporting information on the PNAS web site). The
signature was a significant predictor (P � 0.05) in 29 of 39 analyses
(from 19 of 21 data sets), and was marginally predictive (P � 0.10)
in 3 of 39 analyses (from 3 of 21 data sets) (Fig. 2B). The seven
analyses in which the profile was not an accurate classifier were
from a single multicancer data set (30). This data set was the largest
in the database, providing 13 of the 39 cancer vs. normal analyses,
of which six were predicted significantly. For each of the seven
analyses that were not predicted significantly, there was a similar
(i.e., same cancer type) analysis from an independent study that was
predicted significantly. Taken together, 20 of 21 data sets suggest
that the genes in this cancer meta-signature are differentially
overexpressed in most, if not all, available cancer types relative to
the normal tissue from which they arose.

The existence of a general cancer meta-signature may not be
entirely surprising, because all cancer types share the common
features of unregulated cell proliferation and invasion, and it would
follow that the genes that are essential to these processes would be
highly expressed in multiple cancer types. On the other hand,
however, it is interesting that a small number of genes are almost
universally activated, given the vast array of transforming mecha-
nisms that are known to initiate cancer and the variety of tissue
types represented in this analysis. Activation of these genes may
represent convergence on the essential transcriptional features of
neoplastic transformation. From a clinical standpoint, pharmaco-
logical agents that target these essential features of cancer might
have broad application. For example, TOP2A, a gene present in 18
cancer vs. normal signatures representing 10 types of cancer,
encodes the enzyme topoisomerase II, which is critical for DNA
replication and is targeted by numerous chemotherapeutic agents
(31). Furthermore, agents targeting the proteasome complex, of
which three members were identified in the meta-signature, have
also shown promise. These agents are in clinical trials and have been
shown to induce apoptosis and sensitize cancer cells to traditional
tumoricidal agents (32). The widespread activation of genes that
encode successfully targeted proteins suggests that other genes in
the meta-signature may play equally critical roles in carcinogenesis,
and may serve as novel therapeutic targets.

Meta-Signature of Undifferentiated Cancer. We next sought to iden-
tify meta-signatures that characterize cancer progression as defined
by histological, pathological, or clinical criteria, similar in concept
to a report that identified a metastasis signature common to
multiple types of primary tumors (19). As described above, only 3
of 10 outcome-based analyses identified significant differentially
expressed genes, and two were of the same cancer type, making it
infeasible to attempt to define an outcome meta-signature. How-
ever, 8 of 11 differentiation analyses, spanning seven types of
cancer, identified significant differential expression signatures (dif-
ferentially expressed in undifferentiated cancers relative to well
differentiated cancers of the same origin, Q � 0.10). Undifferen-
tiated cancers of different tissue types all fail to recapitulate their
normal tissue architecture, instead maintaining a disordered state

Fig. 1. Comparative meta-profiling flow diagram (see Methods for details).

Rhodes et al. PNAS � June 22, 2004 � vol. 101 � no. 25 � 9311

G
EN

ET
IC

S



Fig. 2. Meta-signature of neoplastic transformation. (A) Sixty-seven genes overexpressed in cancer relative to normal tissue counterpart in at least 12 of 39
‘‘cancer vs. normal’’ signatures. Twelve distinct cancer types were selected for the figure. White boxes signify either not present or not significant. Red boxes
signify significant overexpression in cancer relative to normal tissue (Q � 0.10), the shade of red indicating the percentage of cancer samples that had an
expression value greater than the 90th percentile of normal samples. (B) The signature significantly predicts ‘‘cancer vs. normal’’ status in 32 of 39 analyses. The
two bars above each heat map represent the predicted class (P) and the true class (T): red signifies cancer and blue signifies normal tissue. Fisher’s exact test was
used to assess the significance of classification. In the heat maps, black signifies data not available, white signifies less than or equal to the normal class mean
expression level, and red signifies the degree of overexpression relative to the mean normal class expression level. FL, follicular lymphoma; DLBCL, diffuse large
B cell lymphoma; SCLC, small cell lung cancer; SqCLC, squamous cell lung cancer; adeno., adenocarcinoma; Prost., prostate; Glio., glioblastoma; Rh, rhabdo-
myosarcoma; PNET, primitive neuroectodermal tumor.
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of increased cellular proliferation and invasion. Furthermore, un-
differentiated cancers are associated with aggressive behavior and
poor patient outcomes. Thus, we hypothesized that if an undiffer-
entiated meta-signature existed, it might suggest common tran-
scriptional mechanisms by which cancer cells avoid differentiation,
or dedifferentiate. Meta-profiling was performed on seven ‘‘undif-
ferentiated vs. well differentiated’’ signatures spanning six cancer
types (overexpressed in undifferentiated cancers relative to well
differentiated cancers, Q � 0.10). Sixty-nine genes were present in
at least four of seven signatures, whereas just one gene was
significant in four of seven signatures by chance (mFDRMIN �
0.030). Twenty-four genes were present in five signatures, and six
genes were present in six of seven signatures, whereas zero genes
were significant in five or more by chance, thus defining an
undifferentiated meta-signature common to multiple types of can-
cer. Fig. 3 displays the 69 genes present in at least four of seven
signatures. Interestingly, a fraction of genes in this meta-signature
overlap with the meta-signature of neoplastic transformation.
These genes are predominantly associated with proliferation
(TOP2A, MCM3, CDC2, RFC4, etc.), the overlap likely owing to
the parallel increase in proliferation in cancer relative to normal
tissues and in undifferentiated cancer relative to differentiated
cancer. Of note, three genes unique to the undifferentiated meta-
signature have a demonstrated role in chromatin remodeling and
broad spectrum transcriptional regulation, including the polycomb
group protein EZH2, which is involved in transcriptional memory
(33), and the histone variant proteins, H2AFX and H2AFZ, which
are known to control the euchromatin–heterochromatin transition
(34). The ability of these genes to modulate the expression of tens
or hundreds of genes suggests that they may play a role in
maintaining the undifferentiated cellular state of high-grade can-
cer. Interestingly, our group recently found EZH2 to be involved in
the metastatic progression of prostate cancer (13) and in the
invasive breast cancer phenotype (35), and another recent study
demonstrated amplification of the EZH2 gene locus in several
primary tumor types (36). Other genes present in the meta-
signature whose function suggests a role in the undifferentiated
phenotype include MELK, a kinase with a demonstrated role in
early mammalian embryogenesis (37), and BIRC5 (survivin),
an inhibitor of apoptosis (IAP family), which may allow undiffer-
entiated cancer cells to overcome apoptotic checkpoints favor-
ing aberrant progression through mitosis (38). The genes in this
signature can be further explored with ONCOMINE (www.
oncomine.org�meta).

To assess the generality of the undifferentiated meta-signature,
a leave-one-out voting classifier was used to predict ‘‘high grade vs.
low grade’’ status in all 11 differentiation analyses (Table 2 and Fig.
5, which are published as supporting information on the PNAS web
site). The meta-signature was a significant predictor in six of the
seven analyses in which differentially expressed genes were origi-
nally identified (P � 0.001). The one analysis that was not predicted
accurately was Singh�Prostate (P � 0.75). In the four remaining
analyses, in which no significant differentially expressed genes were
originally identified, the meta-signature was a significant predictor
in one analysis (Welsh�Ovarian, P � 0.005), marginally predictive
in two analyses (Dhanaskearan�Prostate, Welsh�Prostate, P �
0.15), and not predictive in one analysis (Garber�Lung, P � not
applicable). Taken together, it appears that this meta-signature is
common to undifferentiated breast cancer, lung cancer, ovarian
cancer, bladder cancer, and medulloblastoma, and may be margin-
ally associated with undifferentiated prostate cancer.

Independent Data Set Validation of Meta-Signatures. To confirm the
validity and biological relevance of the meta-signatures, we tested
their discriminative power on 12 independent data sets that became
recently available and were collected after the initial discovery of
the metasignatures (28, 39–49) (see supporting information). To
validate the universal cancer meta-signature, we analyzed nine

independent data sets representing nine distinct cancer types, three
of which were not represented in the original analysis [adrenocor-
tical carcinoma (40), pilocytic astrocytoma (41), meningioma (39)].
Table 3, which is published as supporting information on the PNAS
web site, shows that in seven of the nine data sets, including all three
data sets representing new cancer types, the metasignature signif-
icantly discriminated between cancer and respective normal tissue
(Fisher’s Exact Test, P � 0.05). In the two other data sets,

Fig. 3. Meta-signature of undifferentiated cancer. Sixty-nine genes that are
overexpressed in undifferentiated cancer relative to well differentiated can-
cer (Q � 0.10) in at least four of seven signatures representing six types of
cancer. See Fig. 2 legend for description.
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LaTulippe�Prostate (45) and Rosenwald�Lymphoma (28), the
metasignature made many more correct than incorrect predictions;
however, the discrimination did not reach statistical significance
(P � 0.085 and 0.115, respectively).

To assess the discriminative power of the undifferentiated meta-
signature, we identified five independent data sets that included
low- and high-grade cancer samples (Table 4, which is published as
supporting information on the PNAS web site). In three of five data
sets [Katua�Astrocytoma (44), Schaner�Ovarian (48), and
Sotiriou�Breast (49)] the meta-signature significantly discriminated
between low- and high-grade cancer samples (Table 1, all P � 0.01),
whereas in the remaining two data sets the signature was not
predictive (P � 0.5). In these two data sets [Mutter�Endometrium
(46), Powell�Lung (47)], no genes were found to be significantly
differentially expressed between high- and low-grade cancers (Q �
0.10) and only a small number of cases defined each class (low
grade: n � 4, high grade: n � 3). Similar to the results in the training
set, this signature seems to perform well in data sets that identified
significant gene expression differences, but poorly in those that do
not. It is unclear whether this represents cancer types for which the
undifferentiated meta-signature is not present, or if it was not
detected because of technical issues in particular data sets. Regard-
less, the signature appears to define a wide variety of undifferen-
tiated cancer types both in the training and test sets and likely points
to common transcriptional mechanisms by which cancer cell avoid
differentiation. In summary, this validation on independent mi-
croarray data sets confirms that the meta-signatures represent
common gene expression programs that may be important to the
processes of neoplastic transformation and progression.

In conclusion, the systematic collection of public microarray data
(see www.oncomine.org�meta) combined with the comparative

meta-profiling framework generated a useful platform for drawing
conclusions that span multiple microarray data sets and impor-
tantly, multiple cancer types. By integrating microarray data and
analysis from a number of cancer types, we characterized a meta-
signature of neoplastic transformation, defining a transcriptional
program that is almost always activated in cancer, regardless of cell
of origin. This universal activation suggests that these genes may be
essential to carcinogenesis, and likely represent the convergence of
a number of transforming mechanisms in a variety of cellular
contexts. Furthermore, universal overexpression suggests that these
genes may serve as attractive therapeutic targets. Interestingly,
topoisomerase II and the proteasome complex, both members of
the meta-signature, have been targeted therapeutically with some
degree of success. We also identified a meta-signature of cancer
progression, demonstrating that various types of high-grade cancer
share common transcriptional features, including the overexpres-
sion of specific chromatin remodeling and transcriptional memory
genes that may play a role in the cancer cells’ ability to avoid
differentiation. Finally, this work provides a simple, scalable frame-
work for comparing and assessing the intersection of multiple gene
expression signatures from disparate data sets. This approach will
be increasingly useful as the mass of published transcriptome data
continues to grow.
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